
CHAPTER 1 

VECTOR CALCULUS 
1.1 Introduction 

Electrodynamics is the study of phenomena associated with charged bodies in 

motion and varying electric and magnetic fields. This area of electrodynamics was first 

systematically explained by James Clerk Maxwell. The four ‘Maxwell’s equations’ 

together with the ‘Lorentz force law’ explain the entire electromagnetic interactions 

observed in nature
1
. In order to understand Maxwell’s equations one must be familiar 

with the concepts of electric field, magnetic field, properties of charges, current etc. 

This chapter briefly describes the important points in vector calculus that one must be 

familiar with for the study of electrodynamics.  

As you know, physics deals with the natural laws pertaining to physical quantities. 

Physical quantities, by definition, are measurable quantities. These are classified as 

scalars and vectors.  (Nature did not create them as vectors and scalars. But, classifying 

physical quantities into scalars and vectors help us to understand the nature more 

succinctly. Scalars and vectors are subdivisions of a more general physical quantity 

called ‘tensors’.) We define certain terms in physics whose entire physical relevance is 

understood by their numerical values. Such quantities are known as scalars.  (Examples: 

mass, charge, etc.). But, certain physical quantities are defined such a way that their 

physical relevance is understood only when their magnitudes in different directions are 

specified. These are called vector quantities. For example, the effect of force is 

understood only when its magnitude and direction of action are specified. Therefore we 

recognise force as a vector quantity. Usually, in elementary treatments, a vector is 

defined as a quantity having magnitude and direction. In order to distinguish vectors 

from scalars, we identify vector quantities with bold letters in this book. For example, V 

is a vector and V is its magnitude. Displacement, electric field, magnetic field, angular 

momentum etc. are examples of vector quantities. 

1
Maxwell’s equations and Lorentz force law are given in Appenix-1 
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1.2 Scalar Function 

It is a function that assigns a real number (a scalar quantity) to each point in some 

region of space in which it is defined. Its value does not depend on the particular choice 

of the co-ordinate system.  

The function ρ(x,y,z) which gives the charge density (i.e., charge per unit volume) 

at various points is an example of a scalar function.  Similarly, the function T(x,y,z,t) 

which gives the temperature at various points in a region at a given time t is another 

example. To make it clearer, if the charge density is ρ(x,y,z) = x
2
+2y

2
+z

2
, the charge per 

unit volume at (1,2,3) is 18. 

1.3 Vector Function 

If to each point on a certain set of points in space (for example, the points on a 

curve or a surface or a three dimensional region) a vector V(x,y,z) is assigned, V is 

called a vector function. In other words, a vector function is a function, which gives a 

vector quantity at all points in the domain in which it is defined. 

Example:  

1. If V(x,y) = yi  xj gives the velocity of flowing water, the velocity at points (1,1) and 

(2,2) are i  j and 2i  2j, respectively.  A plot of this vector function is shown in fig. 

1.1a to get a physical idea of the water flower. Note that the length of the vector 

increases with distance from the origin. That is, in this case, water flows faster as the 

distance from the origin increases.  

 

 

 

 

 

 

 

Fig.1.1a: The plot of the vector function yi  xj  



Chapter-1: Vector Calculus-Page-3 
 

2. The vector function given by F(r) = r̂
r 

k
2

 , where k is a constant, is plotted in 

fig.1.1b. (This vector function corresponds to the inverse square law of attractive 

force).  It may be noted that the magnitude of the vector decreases with increase in 

distance from the origin. The direction of the vector field is towards the origin. 

Consider a charge Q kept at the origin. The electrostatic field due to this charge at 

distance r is given by E = r̂
r 

k
2

 , where  k = 
o4π

Q


. 

   

 

 

 

1.4 Vector Components 

A vector may be conveniently represented by an arrow, with length proportional 

to its magnitude (see fig 1.2). The direction of the arrow gives the direction of the 

vector. In this representation, in order to add two vectors A and B, the rear of vector B 

is placed at the tip of vector A. The resultant vector C is then represented by the arrow 

drawn from the rear of A to the tip of B. This procedure is called the triangle law of 

vector addition. On the other hand, if we place the rear of A at the tip of B, we get B+A. 

It can be seen that A+B = B+A. Thus we see that the vector addition is commutative.  

 

 

 

 

Three orthogonal, i.e., mutually perpendicular, axes x, y and z are used in 

Cartesian co-ordinate system to specify a point. Let A be a point with co-ordinates 

(x,y,z). The vector drawn from the origin to A is called the position vector of A. 

B 

A 

Fig. 1.2: 

(a): Representation of A         (b): Representation of B      (c): C = A+B 

A B 
C 

Fig.1.1b: The plot of the vector function r̂
r 

k
2

   
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A given vector can be resolved into its rectangular components along these x, y 

and z-axes as shown in fig.1.3.  Let the vectors i, j and k represent unit vectors (unit 

vector is a vector with unit magnitude) along x, y and z axes respectively.  

From fig.1.3, OA = r  = OB + BC + CA = x i + y j + z k 

Any arbitrary vector A can be represented as A = Axi + Ayj +Azk. Ax, Ay and Az 

are called the components of A along x, y and z axes. Ax, Ay and Az are scalar 

quantities, which may be constants or scalar functions. The modulus or magnitude or 

length of A is A = A = (Ax+Ay+Az)
1/2

. The vector A can be geometrically represented 

by a directed line segment with its length proportional to its modulus and an arrowhead 

showing its direction or by Axi + Ayj +Azk or by (Ax, Ay, Az). The representation as 

(Ax, Ay, Az) is called the component form. Two vectors are said to be equal if they have 

equal magnitude and direction, or each component of both the vectors are equal. The 

vector A = Axi + Ayj lies in the xy plane (since it does not have a component along 

zaxis). For example, the vectors given by the vector function 2yi + 3xzk are parallel to 

the xz plane.  

Let P be a point with coordinates(x1,y1,z1) and Q be with coordinates (x2,y2,z2) as 

shown in fig. 1.4. Then r1 = x1i + y1j + z1k is the position vector (P.V.) of the point P 

and r2 = x2i + y2j + z2k is that of Q. The vector drawn to Q from P, r21 = r2 r1= the 

P.V. of the end point Q minus the P.V. of the initial point P. 

 

 

Fig.1.3:  Components of a vector in 

Cartesian co-ordinate system. 

Note: In this book we take the rear of the vectors as the origin, unless it is specified explicitly. Then the 

vector to any point (x,y,z) from the origin is just r = xi  + yj + zk. 
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If C = A + B and  C = Cxi + Cyj + Czk, then Cx= Ax+ Bx, Cy = Ay+By, and Cz = 

Az+Bz. It can also be proved that C= (A
2
+B

2
+2AB cos )

1/2
, where  is the angle 

between A and B.  

Exercise: 

1. If the displacement of a particle in a medium due to the propagation of a 

transverse wave along positive xaxis is y(x,t) = A sin (kxt). What are the 

dimensional formulae of  y, A, k and  ? 

2. The differential equation of a damped harmonic oscillator is m ,0kx
dt
dxC

dt

xd
2

2

  

where x is the displacement and m is the mass. What is the dimension of each 

term? What are the dimensional formulae of C and k? 

1.5 Product of Two Vectors 

One has to consider the directional properties of vectors while multiplying them.  

A simple multiplication of A with B, like scalars, is meaningless and not defined, i.e., 

(A)(B) is ‘not’ defined. [The dyadic product AB is defined, but it is beyond the scope of 

this book]. While multiplying two vectors, one has to take either a dot product or a cross 

product as explained below. 

1.5.1 Dot Product or Scalar Product or Inner Product 

The dot product of A with B is defined as A.B = |A| |B| cos, where  is the angle 

between A and B. Note that the dot product of two vectors is a scalar quantity. 

Fig.1.4: Vector drawn to Q from P,  

r21 = r2 r1 
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We get, from the definition, i.i =|i| |i|cos 0 = 111= 1 and i.j = 11cos 90 = 0. 

We get similar results for the other combinations. That is,  

i . i  = 1 i . j = 0 i . k  = 0 

j . i = 0 j . j = 1 j . k  = 0 

k .i = 0 k. j = 0 k .k  = 1 

The dot product is commutative:     A.B = B.A 

The dot product is distributive:     A.(B + C) = A.B + A.C  

 

From fig.1.6, cos = 
OP

OC
. Therefore, OP cos = OC = projection of A on B. 

A.B = |A| |B| cos = |B||A| cos = (B)(Acos) = (B)OC . Similarly, it can also be 

proved that A.B is the product of the modulus of A and the projection of B on A, i.e., 

A.B = B.A. The geometrical significance of A.B is that it is equal to the product of the 

length of one vector and the projection of the other on the first vector.   

If A = Axi + Ayj + Azk and B = Bxi + Byj + Bzk, then A.B = AxBx + AyBy + AzBz. 

An example to show the application of dot product: Let F = (3i + 4k) newton be the 

force applied on an object to cause a displacement S = (2i + 4j + 5k) metre. The work 

done is then given by W = F.S = 6 + 0 + 20 = 26 joule.  

1.5.2 Cross Product or Vector Product  

The cross product of two vectors A and B is defined as AB = |A| |B| sin n̂ , 

where  is the angle between A and B and n̂  is the unit vector perpendicular to both A 

Fig.1.5:  Two vectors A and B with an 

angle  between them. 
 

Fig.1.6: Figure to show the geometrical 

significance of dot product. 

B 

A 

O 
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and B.  The cross product of two vectors is a vector, which is perpendicular to the plane 

defined by A and B. The direction of n̂  is given by the right-handed screw rule: If a 

right-handed screw is rotated from the direction of A to that of B, the advancing end of 

the screw gives the direction of n̂ . Or, hold the right hand fingers as shown in fig. 1.7, 

with the fingers showing the direction of rotation from A to B. Then the outward 

stretched thumb gives the direction of cross product. 

The direction of unit vector n̂  changes sign when the order of multiplication is 

reversed, i.e., (A  B) =  (B  A). Therefore the cross product is not commutative.  

The cross product is distributive: A  (B + C) = A  B + A  C  

      

Since the angles between the unit vectors i,  j and k are 90
0 

(see fig.1.7),  

ii = (i)(i)(sin0) n̂ = (1)(1)(0) n̂ = 0 (0 is a null vector; a null vector is a vector with 

zero magnitutde) and ij = (i)(j)(sin90) n̂ = (1)(1)(1) n̂ . But the unit vector 

perpendicular to both i and j and that obeys right-handed screw rule is k. (When a right-

handed screw is rotated from the direction of xaxis to the direction of yaxis, it 

advances along positive zaxis, see fig.1.7.) Thus, we get ij = k. In general, 

ii  = 0 ij  = k  ik = j 

ji  = k jj  = 0 jk = i 

ki = j kj  = i kk = 0 

Let  C =AB. Then, 

Cxi + Cyj + Czk  = (Axi + Ayj + Azk)  (Bxi + Byj + Bzk) 

  = (AyBz AzBy) i + (AzBx AxBz) j  + (AxByAyBx) k 

Fig.1.7: The right-handed orthogonal 

Cartesian co-ordinate system. 

Figure also shows ij  = k 
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Equating the coefficients, gives Cx= (AyBz  AzBy). The other coefficients Cy and Cz are 

obtained by changing x, y and z cyclically. Or, the cross product can be found by  

   C  =

zyx

zyx

BB B 

AA A 
kji

 

Geometrical Significance of Cross-Product: 

The fig.1.8 shows a parallelogram with vectors A and B as adjacent sides. The 

area of the parallelogram = |B|×h. From fig.1.8, h = |A| sin . 

        

Therefore, the area = (|B|)(|A| sin) = |A×B|. That is, the modulus of AB gives 

the area of the parallelogram of which A and B are adjacent sides. The vector AB is 

perpendicular to both A and B and, in this case, it is pointing into the plane of the paper. 

If we represent the area of this parallelogram by a vector S = AB. The modulus of S is 

equal to the geometrical area of the parallelogram. The vector S is perpendicular to the 

plane defined by A and B. Area is considered as a vector and the area vector is 

perpendicular to the plane of the area element. By convention, if the surface is a closed 

one, the outward normal on the surface is taken as the positive direction of the area 

vector.  

An example for the vector cross product in physics: The angular momentum L about 

the origin of a particle with position vector r and linear momentum p is, L = rp.  

Exercise: 

3. Let A = 3i + 4yj + 8x
2
k and B = yi + 3j  k 

(a) Find A+B and AB 

(b) Find A.B and A  B. 

Fig.1.8:  Figure to show the geometrical 

significance of vector cross 

product. 
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4. Find the angles between A = 2i  4j + 5k and x, y and z-axes? 

5. Two forces 3i  5k N and 3k  4j N act on a particle simultaneously. Find the 

magnitude and direction of the resultant force. 

6. Determine the angle between the vectors A= i  2j + 3k and B = 3i  2j + 4k. 

7. Show that 7i5k is perpendicular to 3j. 

8. According to the definition of work in physics, a man walking on a level road 

carrying a bag is not doing any work. Why? 

9. Find the area of the parallelogram of which A = 3i  4j and B = 4j  3k are 

adjacent sides. 

10. Prove the law of cosines of a triangle.  

(i.e., Show that B
2
= A

2
+ C

2
2ACcos for the triangle shown.)  

 

1.6  Triple Products 

Since BC is a vector, one can take the dot product of this vector with another 

vector A resulting a scalar. This is known as scalar triple product or box product. 

Similarly, one can take the cross product of this vector BC with another vector A 

resulting  a vector. This is known as vector triple product. 

1.6.1 Scalar Triple Products 

The scalar triple product of three vectors is defined as A.(BC). It can be shown 

that A.(BC) gives the volume of the parallelepiped with A,B and C are sides with 

common rear point (see fig. 1.9 )  

 

Fig.1.9:  A.(BC) gives the volume of the 

parallelepiped shown in the figure. 



B 

A 

C 
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The scalar triple product remains the same when the vectors are changed 

cyclically, i.e., A.(BC) = B.(CA) = C.(AB). Even though A.(BC)  is a scalar, it is 

different from the ordinary scalar quantities. The cross product changes sign when the 

order of multiplication is reversed, i.e., A.(BC) = A.(CB). Hence the scalar triple 

product changes sign when the reference axes are interchanged. Such scalars whose sign 

depends on the orientation of the reference axes are called pseudo scalars.  

When the vectors A, B and C are represented in the component form, A.(BC)  

is obtained by  the determinant of the components.  

i.e.,     A.(BC)  = 

zyx

zyx

zyx

CCC

 BBB

AAA

 

Note: The vectors obtained as the cross product of two vectors are called pseudo 

vectors or axial vectors. For example, the angular momentum vector L = r  p is a 

pseudo vector. The scalar product of a pseudo vector and an ordinary vector is a pseudo 

scalar. A simple explanation of axial and polar vectors are given below. 

Axial vector: (1) The axial vectors are used to express the rotational effect, (2) The 

axial vector directed towards the axis of rotation. Examples: Torque, Angular velocity, 

and Angular acceleration. Polar Vector: The Polar vector is used to express the 

directed properties. Examples of the polar vector are displacement and force. 

Note: While writing any equation in physics, if the left-hand side is a scalar (or a 

vector), the right-hand side also must be a scalar (or a vector).  More precisely, if A = B, 

both A and B are either axial vectors or a polar vectors.  

1.6.2 Vector Triple Products 

Consider the vector obtained by A(BC). The vectors B and C define a plane. 

The vector BC is perpendicular to both B and C. Hence, A(BC) lies in the plane 

perpendicular to both A and  (BC). That is, A(BC) lies in the same plane defined by 

B and C. Therefore, A(BC)  can be represented as the linear combination of B and C. 

On expanding A(BC) using the component form it can be shown that  

A(BC) = B(A.C)  C(A.B).     (This is referred to as BAC-CAB rule.) 
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1.7 CALCULUS 

1.7.1 Differentiation 

Let y be a function of x: y = f(x).  Here x is the independent variable and y is the 

dependent variable.  The derivative of y with respect to x (written as 
dx

dy
) is defined as 

the ratio of the change y in y due to a change x in x, when x is infinitesimally small. 

That is, 
dx

dy
=

Δx

Δy

0Δx

lim


 . 

 

If we plot a graph between x and y = f(x), the derivative of y with respect to x at 

any point (x1,y1) gives the slope of the curve y(x) at that point.  

The idea of finding the derivative and its advantage can be understood from the 

following simple example.  The displacement S of a freely falling object from rest is 

S(t) = S0 + (½)gt
2
. 

The velocity v, which is the rate of displacement, is     

v = 
Δx
Δ

0Δt
lim S


= 
dt
dS =  gt  

The acceleration a, which is the rate of change of velocity, is  

a =
2

2

dt

d
dt
d

dt
d

dt
d SSv 





  =  g  

 The idea of differentiation can be extended further by taking the directional 

properties of the derivatives into account. Among these, the simplest and important ones 

that we use in this book are the gradient of a scalar functions (section 1.9) and the 

divergence (section 1.10) and curl (section 1.11) of vector functions.  

Fig.1.10:  The derivative of y at a point P is the 

slope of the curve at that point. In the 

figure, 
dx

dy
  at (x1,y1) is equal to tan. 
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1.7.2 Integration  

 If 
dx

d
[F(x)] = f(x) we say that F(x) is an integral or primitive of f(x).  In 

symbols, we write  f(x)dx = F(x), and f(x) is called the integrand. Thus, the integral of 

a function is that function which on differentiation yields the original function as its 

derivative.  

The process of integration is equivalent to continuous summation.  For example, 

consider a charged wire of length L with charge per unit length, called linear charge 

density, .  Assume that the wire is divided into n pieces, each of length dl.  Then the 

charge dq on a small line segment dl is dl (fig. 1.11). Therefore, the total charge on the 

wire segment 



n

1i
idqQ 




n

1i
iidλ l .  When the number of pieces tends to infinity, i.e., 

when dl becomes negligibly small,
i

n

n1,i

idλQ l


  and, this is equivalent to 
L

o

λdl . 

                    

 

 

The idea of integration can be made clearer using the following example. 

Consider a non-uniform distribution of charge on a wire.  Let the linear charge 

density  be proportional to the distance from one end, i.e.,  x or  = k x, where k is a 

constant and x is the distance from the end. Here, since the charge distribution is 

continuous, the total charge up to any distance (say up to x = 10) is calculated using 

integration. (Here, in this example, note that the charge density is a function of x.) 

The total charge up to x = 10 is  

10

0

210

o

10

o
2

kx
(kx)dxλdx 








  = k×50      (1) 

If k =1, we get  = 0 at x = 0,  =1 at x =1,  =2 at x = 2, and so on. This is shown 

in fig.1.12. Eqn. (1) gives Q = 50 if k = 1. That is, the total charge up to x = 10 is 50. 

Fig.1.11:  A charged wire of length L 

with charge per unit length . 
 dl

dq =  dl
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In a similar way, the total charges on a surface is written as 
surface

σda , and inside a 

volume as 
volume

dv , where  is the surface charge density (i.e., charge per unit area), and 

 is the volume charge density (i.e., charge per unit volume). Later we will use the 

symbol ‘  ’ to denote closed integrals, i.e., to specify that the integration is done over a 

closed loop or a closed surface. 

In general, the integrand can be either a scalar or a vector. Till now, we were 

discussing about the integrations (line, surface or volume integration) of scalar 

quantities (,   and  described above are scalar quantities). On the other hand, if the 

integrand is a vector, it is called vector integration. Among the various types of vector 

integrations, we are interested only in the scalar line integral of vectors, scalar surface 

integral of vectors and volume integral of vectors. These three types are represented as 


B

A

.dlA , 
surface

ds A.  and 
volume

dvA , respectively, and we discuss about these in section 1.8. 

1.7.3 Integration by parts 

 We have the general methods, such as chain rule, functions of function rule, 

quotient rule, product rule etc., for finding the derivative of functions. But, 

unfortunately, there is no such general method available for integration. One of the most 

powerful tools used in integration is the integration by parts rule.  It is stated as follows: 

The integral of the product of two functions = (product of the first function and the 

Fig.1.12: An example to show that the integration 

is equivalent to continuous summation. 

Plot of  = kx with k =1. [See text.] The 

charge within the intervals x = 0 and x =1 

is 0.5, x =1 and x = 2 is 1.5, x = 2 and x = 

3 is 2.5, ……., and x = 9 and x =10 is 

9.5. Thus the total number of charges up 

to x = 10 is 0.5+1.5 +2.5+ 3.5+  

….….+9.5 = 50. 
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integral of the second)  (the integral of the product of the derivative of the first and the 

integral of the second). 

dxvdx
dx
duvdxudx)uv(    



  

Or      dxv
dx
duuvdx)

dx
dvu(  





 

Note: Suppose either the function u or v (or both) vanishes at the 

boundaries a and b. Then,  











b

a

b

a

b

a

b

a

dxv
dx
dudxv

dx
duuvdx)

dx
dvu( . That is, the 

differential operation can be shifted from v to u. This idea is widely used in 

vector calculus. 

Exercise: 

11.  If the displacement of a particle is given by S = (7t9t
2
+3)k, find the velocity 

and acceleration of the particle when t = 3 s. 

12. The motion of a particle is given by parametric equations x = 4sin2t, y = 4cos2t, 

z = 6t. Find the velocity and acceleration of the particle if the co-ordinates are 

expressed in meters. 

13* A current I flows through a wire of radius R.  

(a) If the current is uniformly distributed over the surface, what is the surface 

current density (current through unit length perpendicular to the direction of the 

flow of charges)? 

(b) If it is distributed in such a way that the volume current density is inversely 

proportional to the distance from the axis, what is the volume current density 

(current through unit area)? [The term current density generally refers to the 

volume current density, unless it is specified.] 

14* If the volume charge density of a charged sphere of radius 6 m is proportional to 

the distance from the centre as  =3r, find the total charge on the sphere. What is 

the charge density at the radius equal to 2 m? 
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15. The displacement of a particle is r = [10t
3
5t

2
)i + 5t

2
j + (t

2
5)k] m. Determine 

the angular momentum about the origin of the co-ordinate system and the torque 

on it at t =1s. [Mass of the particle = 0.010 kg.] 

1.8 Three Important Integrals 

(1) Scalar Line Integral of Vector Functions 

This is one of the simplest and most useful vector integration. Suppose we want to 

move a particle from point A to B by applying a force. Divide the path from A to B into 

n number of small segments each having length dl. We know the work done by a force 

field F in displacing a particle through infinitesimal displacement ‘dl’ is dw= 

(F)(dl)(cos) = F.dl. If the force is a variable force or if the angle between force and the 

displacement vector is not a constant, ‘dw’ will be different for different line segments. 

The total work done in taking the particle from point A to point B is W=


n

1,i

ii.dlF . In 

the limit n, the summation becomes integration along the path from A to B, and we 

write W = 
B

A

dlF. .  This is the scalar line integral of a vector function (or vector field) F 

along the curve from A to B. 

It is important to note that this line integral usually depends on the path along 

which the integration is done and also on the end points A and B. Further, the integral 

over a closed path may or may not be zero, i.e., 
line

.dlF  need not be zero, in general. 

However, there are many situations where 
line

.dlF  = 0, and in such cases we call the 

vector field F a conservative field.  

(2) Scalar Surface Integral of Vector Functions 

Flux is a property of a vector field and is defined as follows:  

Flux = (average normal component of the vector field).(surface area) 
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Consider a surface S as shown in fig. 1.13.  Divide the surface into small sections 

ds1, ds2, ... etc. with representative vectors ds1, ds2, .... etc.  Let Vi be the value of the 

vector function V(x,y,z) at dsi. Then, 




n

n1,i
ii

i

.d
0ds

lim
sV

 
= 

surface

.dsV  is called the scalar 

surface integral of V over the surface S or the flux of V over the surface.  

[V.ds = V. n̂ ds where n̂  is the unit vector perpendicular the surface ds.  

V. n̂  = Vcos = the component of V perpendicular to the surface element ds.]  

 

If the surface is a closed one, the outward normal is taken as the positive direction. 

Since ds is a vector, we write ds = dsx i + dsyj + dszk. Then, 

   
surface

.dsV = )V V  (V
surface

zyx  kji . (dsxi+dsyj+dszk) = )dsV dsV ds(V
surface

zzyyxx 

 

       The idea of surface integral is explained using the following example. 

 

 

 

 

 

Fig.1.13: A vector field V passing 

through a surface S. 
 

Fig.1.14:  A rectangular tube through which water flows with velocity 

5 m/s towards right. 
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Consider a water flow through a rectangular tube with velocity 5m/s along 

xdirection. Let the height and breadth of the tube be 4 and 3 meters, respectively (see 

the figure 1.14). Let the tube be cut at one end such that AE = 2m, EB = 4m, BC = 3 m 

and AD = 3m.  

We want to get the total quantity of water flowing out of this tube per second.  

This problem can be solved in two ways. 

1. The area of cross section of the tube is 4  3 = 12 m
2
. The velocity is 5 m/s. 

Therefore the quantity of water flowing out per second is given by (512) = 60 m
3
. 

2. Let the point A be the origin. Also let  AD  be along y-direction, AE  along negative 

xaxis and EB  along zdirection. Therefore the vector AD  is 3j, AE  is –2i and 

EB  is 4k. The velocity vector V = 5i. Area of the face ABCD is AD AB  (refer to 

section 1.2.2 to understand how the vector cross product is used to represent area). 

Area S = AD AB = 3j(2i + 4k) = 6k + 12i.  

The component of V along the direction of S, i.e., perpendicular to the surface 

ABCD is Vcos, where  is the angle between V and S. Therefore the total quantity of 

water flowing per second perpendicular to the surface is (V cos)S = V.S.  

V.S = (5i).(6k + 12i) = 60 m
3
/s  

Or, the component of S along V is S(cos). Therefore, the quantity of water that flows 

along xaxis is V(S cos) = V.S = 60 m
3
/s. 

This answer ‘60’ should be independent of the shape of the end surface. If the end 

surface is not flat, we divide the end surface into a large number of infinitesimally small 

surface elements and evaluate 




n

n1,i
ii

i

.d
0ds

lim
sV (i.e., 

surface

.dsV ) to get the net flow per 

second. When we evaluate 
surface

.dsV , the answer will be 60 m
3
/s. This is the physical 

meaning of scalar surface integral of vector functions.  
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Suppose we want to find out the volume of a liquid flowing out per second from a 

closed surface. It is calculated as 
surface

.dsV , where V(x,y,z) is the vector function that 

gives the velocity of fluid inside the volume. If 
surface

.dsV comes out to be negative, it 

simply means that the liquid is entering into the volume bounded by the surface. 

(3) Volume Integral of Vector Functions 

We know from section 1.7 that the net charge on a material is Q = 
volume

dv , where 

 is the charge density function. Similarly, one can do G = 
volume

dvJ  for a vector field.  

This expression contains three equations in three dimensional space. For example, the 

xcomponent of G is given by Gx = 
volume

x dvJ  .  We will come across this type of integral 

when we deal with vector potentials in magnetism.  

1.9 Gradient 

If f1 is the value of a scalar function f(x,y,z) at (x1,y1,z1), then f2, the value  at 

(x1+x,y1,z1), is f2 = f1 + Δx
x

f

)z,y,at(x 111





 

Here it is assumed that x is infinitesimally small.  Similarly f3, the value of the 

function at (x1+x, y1+y,z1+z), is  

  f3= f1 + Δx
x

f

)z,y,at(x 111






 

+  Δy
y

f

)z,y,at(x 111






 

+ Δz
z

f

)z,y,at(x 111





 

       The change  f = f3  f1 = 
x

f




x +  

y

f




y + 

z

f




z 

 f = (
x

f




i+ 

y

f




j + 

z

f




k).(x i + y j + z k) = f . l  (1) 

Here ‘l’ stands for the infinitesimal displacement vector x i + y j + z k and 

the ‘’ symbol (called the grad or gradient or del operator) stands for i
x


+j

y
 +k

z


. 

f is a vector function, called the gradient of f(x,y,z). 
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Eqn.(1) needs some explanation. For a given f(x,y,z), we get the vector function 

f as 
x
f

 i+

y
f



j+
z
f

 k.  This f(x,y,z) has a specific direction and magnitude at a given 

point. dl is the infinitesimal displacement given by x i + y j + z k from the point 

(x,y,z).  f becomes zero if f and dl are perpendicular. The surface over which the 

function ‘f’ has a constant value is called a level surface. (If the scalar function 

represents the potential, we call this surface an equipotential surface.) That is, if dl  

lies on a level surface f is zero.  Since f  and  dl cannot be zero in general, f has 

to be perpendicular to dl. That is, the vector f is perpendicular to a level surface. 

If x̂  is the unit vector along l, f = f.l = f. x̂  |l| = (|f|cos) |l| (where  is 

the angle between f and l). In words: f = The product of the projection of f along 

the direction of l  and the length of the vector l.  

If |l|=1, f =f. x̂ . That is, the change in f along any direction for unit 

displacement is given by f. x̂ , where x̂  is the unit vector along that direction. 

From vector dot product,   f .l = |f| |l| cos    (2) 

(where  is the angle between f and l .) 

From eqns. (1) and (2), 
||

f
l

 = |f|cos. The value of 
||

f

l


 changes depending 

on the angle  between the vectors f and l. Thus, in the limit l   0, we get 

0Δ
lim
l  

||
f
l

  = 
ld

df
= |f|cos 

or  the change, df =  |f| cos (dl )    (3) 

From eqn(3), we see that that the change df in f for a given dl depends on the 

angle between f and dl. If f and dl are in the same direction we get the maximum 

value of df. Then, 
ld

df
 = |f|. In other words, the modulus of the vector function f at a 

point is equal to the maximum value of 
ld

df
, and points in the direction in which the 

change in f is maximum for infinitesimal change in special variables. 
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Consider a gas-filled non-conducting vessel with bottom surface kept at 0
o
C and 

the top surface at 100
o
C.  In this case, the density of the gas is maximum at the bottom 

and minimum at the top.  If D(x,y,z) is the scalar function which gives the density of the 

gas inside the vessel, then D is a vector function that points downward. That is, as one 

moves from a point (x,y,z), he/she will find that the rate of increase in density of the gas 

is maximum when moves downward. The magnitude of D gives the change D for 

unit displacement in the downward direction.  Similarly, if T(x,y,z) is the function 

which gives the temperature of the gas inside the vessel, then T  points upward. It 

means that as one moves from any point (x,y,z), he/she will find that the rate of increase 

of temperature is maximum when moves upward.  

Exercise: 

16* Show that 
r
1 =

2r

r̂
 where r is the modulus of  r given by xi + yj + zk. 

17*  Verify 
R

1
 =

2R 

R̂

 
where

z
 

yx 










 kji , R = r  r, r = xi + yj + zk 

and r= xi + yj + zk. 

18* Show that r = r̂ . 

1.10 Divergence  

This is a type of differentiation done on vector functions. The divergence of a 

vector field at a point gives the measure of the vector field spreading out from the point 

considered.  If  is the infinitesimal volume enclosed by an infinitesimally small closed 

surface surrounding a point P(x,y,z), then the divergence of  V at P is defined as,   

div V (written as .V) =  



surface

.d

0

lim
sV

 

We know that 
surface

.dsV

 

is the net flux over the closed surface.  

Thus, the divergence of V is the net flux from unit volume.  The divergence of  

V(x,y,z) in Cartesian system is,  

.V = (i
x


+ j

y


+ k

z


).(Vxi +Vyj +Vzk) =

x

Vx




+

y

Vy




+

z

Vz




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[Note that the divergence of a vector function is a scalar function. The divergence itself 

is an operator that gives certain meaningful physical idea when it operates on vector 

functions.] 

Let F(x,y,z) be a vector function defined in a region. If this vector function 

converges at certain points, we say, its divergence is negative at these points, and if the 

function is spreading out from certain points, its divergence is positive at these points. 

(See the fig.1.15) 

 

 

 

 

 

Consider an imaginary surface enclosing some charges. Also assume that the net 

charge at P is positive and that at Q is negative (see fig. 1.15). If E represents the 

electric field inside this enclosed surface, .E is positive at P and negative at Q. That is, 

E spreads out from P and sinks in at Q. In other words, the point P acts as a source of E 

and Q as a sink. For all other points in the region .E = 0. A vector with zero 

divergence is called a solenoidal vector. 

Exercise: 

19. Show that . [( y
2 
 z

2
)i + 3x

2
j + (x

2 
+ y

2
) k] = 0 

 

 

Fig.1.15: A hypothetical surface S enclosing some charges. At the point P, the net charge is 

positive and at Q it is negative. The function E representing the electric field in 

this enclosed surface has positive divergence at P and negative divergence (or 

convergence) at Q. 

S 

P 

Q 
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1.11 Curl (or Circulation or Rotation) 

The curl of a vector function B(x,y,z) = Bxi + Byj + Bzk is calculated in Cartesian 

coordinates as  B  =  (i
x


 + j

y


+ k

z


)  (Bxi + Byj + Bzk) 

      = (
y


Bz 

z


By) i + (

z


Bx 

x


Bz)j  + (

x


By 

y


Bx)k 

                  i.e.,  B  = 

zyx BBB
zyx 










kji

 
Curl of a vector function is also a vector function. Physically, the curl of a vector 

function at a point gives how much of the vector quantity curls around the point 

considered. For example, let us assume that V = yi  xj gives the velocity of water flow 

in certain region. Then 

.V = (i
x


+ j

y


+ k

z


).(y i   x j) = 0 

This shows that water neither accumulates at nor diverges from any point. 

V = 

0xy
dzyx












kji

 = (
x


(x)  

y


y)k = 2k 

That is, the curl of V is along negative zaxis. This shows that water curls around 

the zaxis. Notice that the vector function V is in the xy plane and the curl of V is 

along the negative zaxis. 

Let us examine the physical significance of divergence and curl using the 

representation of the vector function V. Fig. 1.16 shows the plot V = yi – xj. It can be 

seen from the figure that water does not accumulate at any point. This idea is 

mathematically written as .V = 0. The fig.1.16 shows that water curls around the 

origin. It is clear from the figure that if a right handed screw is rotated along the 

direction of the flow of water, its tip advances along the negative zdirection. 
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It may be noted that one need not always physically see a pure rotation of the 

vector fields when the curl is non-zero. From the expression of curl given above we see 

that curl of a vector is nonzero if 
y

Bz






z

By




or  

z

Bx




 

x

Bz




 or 

x

By




  

y

Bx




. For 

example, the vector V = yi has non zero curl. (Draw this vector function and calculate 

curl, and verify for yourself.). The vectors whose curl is zero are called irrotational.  

Exercise: 

20* Show that F = 0 where F =   r̂
r

mGm
2

21  

21. Show that F = yz i + zx j + xy k can be written as the gradient of a scalar 

function and as a curl of a vector function. 

1.12 Three Fundamental Theorems in Vector Calculus 

(1) Gauss’s Theorem or Gauss Divergence Theorem or 

Divergence Theorem 

The theorem states that the volume integral of the divergence of a vector function 

A taken over any volume is equal to the surface integral of A taken over the closed 

surface enclosing the volume.  Mathematically,  
volume

dv)(  .A
  
= 

surface

.dsA

    

  

Explanation using liquid flow: 

Vector fields are often illustrated using the example of the velocity field of a 

liquid. The velocity, a speed and direction, of a moving fluid at each point can be 

Fig.1.16:  A schematic representation of the 

vector function yi  xj. 

 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Velocity
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represented by a vector J. Consider an imaginary closed surface S inside a liquid, 

enclosing a volume of liquid. The flux of liquid out of the volume is equal to the surface 

integral of the velocity over the surface, i.e., 
surface

.dsJ . (See sec.1.8(2)). 

Since the amount of liquid inside a closed volume remains constant, if there are no 

sources or sinks inside the volume, the flux of liquid out of the surface imagined is zero, 

i.e., 0.d
surface

 sJ . If the liquid is moving, it may flow into the volume at some points on 

the surface S and out of the volume at other points, but the amounts flowing in and out 

at any moment are equal, so the net flux of liquid out of the volume is zero.  

However if a source of liquid is inside the closed surface, such as a pipe through 

which liquid is introduced (fig.1.17 shows three sources), the additional liquid will exert 

pressure on the surrounding liquid, causing an outward flow in different directions. This 

will cause a net outward flow through the surface S. The flux outward through S equals 

the volume rate of flow of fluid into S from the pipe. [Similarly if there is a sink or drain 

inside S, such as a pipe which drains the liquid off, the velocity throughout the liquid 

will be towards the location of the drain. The volume rate of flow of liquid inward 

through the surface S equals the rate of liquid removed by the sink.] 

If there are multiple sources and sinks of liquid inside S, the flux through the 

surface can be calculated by adding up the volume rate of liquid added by the sources 

and subtracting the rate of liquid drained off by the sinks. The volume rate of flow of 

liquid through a source or sink (with the flow through a sink given a negative sign) is 

equal to the divergence of the velocity field at the pipe mouth. (The divergence of V is 

the net flux from unit volume, sec. 1.10).  So adding up (i.e., integrating) the divergence 

of the liquid throughout the volume enclosed by S, 
volume

dv.J , equals the volume rate 

of flux through the surface S. Hence, at steady state, 


volume

dv.J 
  
= 

surface

.dsJ

    

This is the divergence theorem. 

 

 

https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Surface_integral
https://en.wikipedia.org/wiki/Surface_integral
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Note that the Gauss’s theorem converts a volume integral into a surface integral 

and vice versa.  Note also that the theorem says nothing about the shape of the surface.  

The only condition is that the volume considered for integration must be enclosed by the 

surface considered and the system must be in a steady state. 

(2) Stokes’ Theorem 

Stokes’ theorem states that the surface integral of the curl of a vector function A 

taken over any surface is equal to the line integral of A along the periphery of the 

surface. 

i.e.,  
surface

).d( sA  = 
line

.dlA

  

  

 

 

 

 

 

 

 

 

 

Fig.1.18: Figure shows certain vector field A over a 

bounded surface. Let the surface may be divided 

into many cells and A1, A2, A3 etc. be the vectors 

at the cells 1,2,3, etc.. Then A1, A2, A3 

etc. are the measure of the rotational effect of A 

at each cell. Ai.dsi picks up the perpendicular 

component Ai at each surface element. Since 

the directions of the vector components 

responsible for the rotation are in opposite 

directions for the adjacent interior surface 

elements, only the components along the outer 

boundary survive on summation of  Ai.dsi over 

the surface..  
 

Fig. 1.17:  At equilibrium, the quantity of water 

comes in per second is equal to that 

flows out through the hypothetical 

surface S per second. 
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Physically, Stokes’ theorem means the following: Consider a vector function A, 

which has nonzero curl over a bound surface.  A is a measure of the rotational 

effect (or circulation effect) of the vector field. The dot product ‘A.ds’ picks up the 

components of A perpendicular to the surface element ds. Fig. 1.18 shows the 

rotational effect of certain vector function over a bounded surface. (Recall that in fig. 

1.16, A is along ve axis, and the vector A is in the x-y plane.) Addition of the 

normal component of A over the surface is equivalent to calculation of the net 

rotational effect of A parallel to the surface. The circulation effect of vector A over any 

cell lying inside the boundary cancels that due to the rotational effects of the adjacent 

cells. Only the components that survive after summation is the components of A lying 

along the boundary. (See fig. 1.18.) Thus,  
surface

).d( sA  is equivalent to 
line

.dlA .  

Note: The surface can assume any shape: plane or curved or balloon shaped etc. Stokes’ 

theorem converts a surface integral into a line integral, and vice versa. The Stokes’ 

theorem also determines direction of the surface area vector for an open surface: if the 

fingers of our right hand point in the direction of line integral around the boundary, the 

outward stretched thump points along the direction of the surface area vector. Hence, in 

fig. 1.18, the surface area vector is into the plane of the paper. 

Stokes’ theorem suggests that for any vector A,   
surface

).d( sA  does not depend on 

the nature of the surface, but depends only on the boundary of the surface. Consider a 

balloon shaped surface.

 
 

surface

).d( sA  is equal to 
line

.dlA  along the mouth of the 

balloon. When the mouth of the balloon shrinks to a point, 
line

.dlA

 

becomes zero, and 

the surface becomes a closed surface. Hence  
surface

).d( sA  becomes  
surface

.dsA , and is 

zero according to Stokes’ theorem. That is   
surface

).d( sA = 0 for any vector A.  
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Gauss’s divergence theorem gives,  
surface

).d( sA =  
volume

dv)(  A . . This is valid 

for any volume considered. This implies that, for a any vector A, .(A) = 0. If we 

denote A = B, we get .B = 0. That is B is solenoidal. In other words, any 

solenoidal vectors (here vector B) can always be represented as the curl of a vector 

(here vector A). The vector whose curl gives a solenoidal vector is called the vector 

potential associated with the solenoidal vector. In this example, A is the vector 

potential of B. 

(3) Theorem for Gradient 

If  is a scalar function then,   
B

A

.dl = (B)  (A) 

Explanation of the gradient theorem: Let  be a scalar function. Then  is a 

vector function, which gives the maximum rate of change in the scalar function for 

infinitesimal change in the position (see section 1.9). We want to find the net change in  

 as we go along a curve from point A to point B. For this, divide the curve AB into a 

large number of small segments having length dl.  

           

From fig.1.19, .dl1 =dl1cos1. Here, cos1 is the component of  along 

the segment dl1. Similarly .dl2 =dl2cos2, and cos2 is the component of  

along the segment dl2. From eqn.3 in section 1.9, (cos) (dl) = , which is the 

change in  as one moves along dl. Thus, if there are n segments, the total change 

occurs along the entire curve AB =



n

1i
iΔ  = 




n

1i
ii d. l   

Fig.1.19: Figure shows that  cos1 is 

the component of  along the 

segment dl1 and  cos2 is the 

component of  along the 

segment dl2. 
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If the line segments are infinitesimally small, the summation becomes an 

integration and we get the total change in  as  



n

n1,i
ii d. l =  

B

A

.dl . But, the change 

in the value of  = The value of  at B  ̶  The value of  at A. 

 That is,  
B

A

.dl  = (B)  ̶  (A), where (B) is the value of the function at B and 

(A) is that at A. This is the physical interpretation of the gradient theorem. 

If  = V,    
B

A

.dlV  = (B)  ̶  (A). 

 Then, for any vector function V given by the gradient of a scalar function , the 

line integral of V along any line segment is equal to the difference in the values of the 

scalar function  at the end points. That is,  
B

A

.dlV  is independent of the path, if  V=. 

For a closed loop 
line

.dlV = (A)  ̶  (A) = 0. In other words, if 
line

.dlV = 0 for some 

vector function V, one can always find a scalar function  such that V = . In physics, 

we call this  as the potential function of the vector field V. In other words,  
line

.dl = 

0. Using Stokes’ theorem,  
line

.dl =  
surface

.d)(( s  = 0, for any shape of the surface. 

This implies that for any scalar function ,  = 0 always.  

1.13 Some Important Vector Identities 

The following vector identities regarding vector functions A, B and C and scalar 

functions ‘f’ and ‘g’ are very important, and are often used in this book. Proofs of these 

identities are not worth doing here. These identities can be verified using exercises 23 

and 24. The operator ., called the ‘Laplace operator’ or ‘Laplacian’, is denoted as 
2
 

in the following equations.  
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In Cartesian coordinate system 
2 

= 
222 zyx 







 . For a scalar function f, 

(.)f is denoted as 
2
f. For a vector function A, 

2
A implies 

2
Axi + 

2
Ayj + 

2
Azk.  

(1) . (A) = 0 

(2)  (f) = 0 

(3) (A) =  (.A) 
2
A 

(4) .(fA) = f(.A) + A. (f) 

(5) (fg) = f(g) + g(f) 

(6)   (fA) = f (  A)  A  (f) 

(7) . (AB) = B. (A)  A. (B) 

(8)   (A.B) = A  (B) + (A.)B + B  (A) + (B.)A 

Exercise: 

22*  If the charge enclosed by a spherical surface decreases at the rate of 4 C/s, find 

the total electric current through the surface. Find also the average current 

density through the surface. 

23. Let A = 3x
2
i  ̶  z

2
j  yk and B = y

2
i + 6k. Show that  

 (a) . (A) = 0 ;   (b) (A) = (.A)  ̶  
2
A ; 

 (c) .(AB) = B. (A)  ̶  A.(B) 

24. Let g = x
2 
 3z

2
, f = 3y  ̶  x

2
 and A = 3y

2
i
  
 z

2
j. Show that  

(a)   (fA) = f(A)  ̶  A(f) 

(b) (fg) = f(g) + g(f) 

(c) .(fA) = f (.A)+A. (f) 

 (d)   (f) = 0. 

25* Show that the vector area A bounded by a loop in a plane is  A=  
loop

d
2

1
lr

 

26. Show that 0
r

r̂
.

2
  if r  0 and  4

r

r̂
.

2
 if r = 0. 
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1.14 Orthogonal Co-ordinate Systems 

 In order to study the physical interactions happening in a three dimensional 

space, we need a coordinate system that span the entire 3D space. There are a variety of 

3D coordinates systems. Many problems in physics are highly simplified when we write 

the expressions in a suitable coordinate system, instead of conventional Cartesian 

coordinate system. Three important orthogonal co-ordinate systems widely used are 

briefly described in this section. They are  

1. Rectangular or Cartesian co-ordinate system 

2. Spherical polar co-ordinate system 

3. Cylindrical co-ordinate system 

1. Rectangular Cartesian Co-ordinate System 

It is assumed that the readers are familiar 

with this system. We shall restrict ourselves to the 

right-handed co-ordinate system. In this system, 

the co-ordinate of any point in space are taken as 

the distances from the origin along three mutually 

perpendicular axes, and written as (x,y,z). The 

unit vectors along x,y and z axes are respectively 

denoted as i, j and k. These unit vectors are 

mutually perpendicular. Let the co-ordinate of a 

point A be (3,6,2). Then 3i + 6j 2k is the 

position vector of the point A.  

The following points are worth noting in this coordinate system.  

 The separation vector drawn from D (x1,y1,z1)  to a point C (x2,y2,z2) is given by  

(x2x1)i + (y2y1)j+(z2z1)k.  

 An infinitesimal displacement in this system is dl = dxi + dyj + dzk 

 A volume element in this system is dv = (dx)(dy)(dz) 

 An elemental area perpendicular to z-axis is (dx)(dy)k 

 An elemental area perpendicular to x axis is (dy)(dz)i 

Fig. 1.20 


